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A MATRIX METHOD FOR THE ANALYSIS OF BENDING VIBRATIONS * /201
BASED ON THE DEFORMATION TECHNIQUE ‘

R, Zurmihl
27758

A matrix method, using a so-called deformation method for
computing vibrating beams and frames of intriqéte configura-
tion, is described, with construction schemes for stiffness
and flexibility matrices, The system is based on an ele-
mentwise computation of strain, using flexure and torsion

as system coordinates and yielding higher accuracy at less
matrix rows, Variable cross sections, shearing strain,
torsional inertia, etc, of two-dimensional frames and beams
are covered by the method, which can be extrapolated also

to three-dimensional systems under torsion and is suitable
for digital computer programming, Numerical data on a
conventional iteration process are given for calculating
higher eigenvalues and for treating singular stiffness /,\

Harhor-

matrices,

1., Introduction

For the computation of complex rodlike vibrating systems (beams and frames)
methods are desirable that attack the problem by individual elements, The |
structure of the system of certain repetitive structural elements is to be
fully covered by the procedure in such a method, In addition, the combination

of the individual elements into one system must be simple from a computational

* Numbers in the margin indicate pagination in the original foreign text,
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viewpoint and as schematic as possible, The more satisfactorily these require—?
ments are met the less will be the influence of an intricate system structure
on the scope and course of the computation and the more readily can such a
computation be made on an electronic computer,

| A method of this type, widely used in recent years - specifically in
Germany - is the method of transmission matrices®*, In this method, the problem;
is attacked from the viewpoint of differential equations as an initial-value
problem, which necessitates considerable computational effort and can actually .
only be done by means of an electronic computer,

Another trend has developed in modern aircraft statics, where the require-:
ment for an elementwise treatment has been made from the statics end and was |
finally realized by the calculus of matrices**, The static computation is
followed by a determination of the elastic properties of the system in the form
of a flexibility or stiffness matrix, used as the basis for calculating the
vibrations, This computation itself, as a rule, is performed rather roughly by
replacing the continuously distributed masses by point masses, a process which .
is widely used in other fields,

In this report, we use the second of the above development trends as basis
for calculating the bending vibrations of beams and frames, with the purpose of.
correlating the static and dynamic part of the problem which, in the above- |
mentioned theory, had been loosely treated; we hope that, in this manner, it
will be possible to approximate the continuous distribution of the stiffness as

well as of the masses with the same order of magnitude of accuracy, This be-

% A detailed presentation and literature data are given by Klotter (Bibl,1).

%% A detailed list of numerous reports, although predominantly on the static
aspect of the problem, are found in a report by Argyris (Bibl.2).
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comes possible by using flexure and torsion as system coordinates to which the ?
elements of the stiffness matrix as well as of the mass matrix are referred,

In view of the resultant greater accuracy, matrices of a moderate number of
rows, even for higher natural frequencies, will be sufficient.

The procedure for which close relations can be proved with the integral
equation as well as with the calculus of variation, as the classical methods
for boundary and eigenvalue problems, was found to be highly adaptable, Here,
an intricate system structure with intermediary conditions has no detrimental
influence, which is also true for the static indeterminacy which does not enter
the calculation. In this method, it is permissible for the cross sections to
be variable and even shearing strain and torsional inertia can be taken into
consideration, The method, described here for beams and two-dimensional rect-— 2
angular frames, can be extrapolated also to three-dimensional systems with
torsional effects,

The method leads to the development of a stiffness matrix and a mass ma-
trix of similar external structure, For the numerical treatment of this matrix:
eigenvalue problem, numerous methods are available today, suitable also for
electronic computers, so that the problem can be considered as practically
solved as soon as these two matrices have been constructed which, incidentally,
can also be done automatically on the basis of the element data, Nevertheless,‘
for the conventional iteration method in Sections 9 and 10, we will give numer-
ical data for calculating higher eigenvalues and for treating singular stiff-

ness matrices,
2. Coordinates

The basis of our procedure is the representation of the bending strain by
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a finite number of flexures wy; and torsions gq; = wj on one beam point j each,
The continuous system is coordinated with a discrete equivalent system with [ggg
the coordinates w;, ¢, which are used by us under the common denomination y, |
with continuous subscripts of i =1, 2, ..., n. These coordinates will be
called system coordinates. Possible deformations such as wy = 0 at an inter-
mediate support, which vanish because of the bearing conditions involved, are |
not covered by y, since they do not occur in the equations,

These coordinates y, (displacements and torsions) form the frame of refer-.
ence for the factors used in the further method, including the stiffnesses c,,
as well as - if they exist - the flexibilities f,, inverse to these, Thus, we -
have the following notations:

¢4y = @ force or a moment K, under unit displacement or unit torsion y, =

=1 atyy; =0 for j # k;
f,# = a displacement or torsion y; under unit load or unit moment K, =1
at Ky = 0 for j # k.
The symbols c,, represent elements of the stiffness matrix € of the system,
while the symbols f,, represent elements of the corresponding flexibility ma-
trix § if @ is nonsingular: § = €', In the case of a singular € (absence of
linkages), no flexibility §§ exists,

The computation with the stiffnesses Cyx (constraining forces under unit
strain) is known as deformation method while the computation with flexibili-
ties f,, (diSplacements under unit forces) is known as dynamic method, For a
computation method working on the elementwise principle, as conceived by us,
the deformation method is definitely preferable, This is substantiated by the
fact that a unit strain will manifest itself as constraining forces (except at

the deformation point itself) only at directly adjacent system points, whereas
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a unit load propagates as deformation over the entire system. Therefore, we
will rather use the concept of stiffness in our discussion,

The selection of the strains w; and ¢, as coordinates is of advantage from;
various viewpoints., By means of these two strains, the slope of the flexure i
w(x) within a "field" between two adjacent points j and j + 1 can be quite ac- |
curately reproduced by a cubic interpolation polynomial which is uniquely de-~
termined by the four boundary coordinates wy, qy, Wyy1, @y431 of the field as
"supporting values'" data (so-called Hermitian interpolation)*, without necessi-
tating any coordinates located outside of the field, Any discontinuities at
the field boundaries, such as an intermediate link with a jump in ¢, thus in-
troduce no difficulties. In addition, such an approximation W(x), composed ’
sectionwise of cubic polynomials, represents an "admissible function™ in the
sense of the calculus of variation: satisfaction of all geometric boundary and
intermediate conditions, continuity in % and W' (with the exception of distinct
discontinuity points).

As field boundaries, we select principally all points of geometric or dy- .
namic discontinuities such as articulations, bearings, spring-filled supports,
discrete masses, cross-—section discontinuities, etc., However, also mere sub-
divisions of longer beam sections, made for the purpose of adequate accuracy,
will be counted by us as fields whose total number will be denoted by r,

For the individual field, we are using new coordinates, After selection
of a coordinate system (x, y, z) for the field with the number p (Fig.l), the
strains with fixed sign at the beginning and at the end of the field will be

p p

denoted by wf, ty, and wg, ¢§ for which we again introduce the common denota-

% This interpolation has also been mentioned by Birkhoff (Bibl.3), but the
concept has been treated there in a different manner., See also a report by
Schaefer (Bibl.L).



tion y?(j =1, 2, 3, L), These "field coordinates" y? are correlated with theé
system coordinates y,(i =1, 2, ..., n) in a definite manner, which is easy to ‘
comprehend in the concrete case, This correlation can be formally represented ;
by means of so-called incidence matrices Jps which are matrices with the ele- |
ments O, 1, or also -1, indicating whether a system coordinate y, is "incident"i
on the corresponding field or not and with which sign this coordinate appears,
which latter depends on the selection of the field coordinate system. Here,
each incidence matrix %p consists of four rows corresponding to the four field
coordinates yf and of n colums corresponding to the n system coordinates y,.
At the place ji, we have 1 for the case y? = y, and -1 for the case yf =~y
At all other places, we have O, If, because of bearing conditions, one y? = O,:
the row j will contain only 2zeros, It is even simpler to eliminate these zerosi
entirely by canceling the corresponding row and column of the two field ma-
trices(Sp andﬂﬂp still to be introduced., If the vector of the n system coordi~
nates y, is denoted by h and the vector of the four field coordinates y? by hp,i

the correlation will read

D= ‘501) . (l:)

Finally, for later use, the r field incidence matrices Jp are combined into /203

a system incidence matrix by superposing the field strips %p:

e2 ¢2

2
i

(2)

[T

Simpler and directly applicable for machine computing is the representa-

tion by an incidence Table: For each field, the indices +i are written row by

* A confusion of the superscripts with exponents is not likely,
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row in the sequence j = 1, 2, 3, L for which yf = +y,. In the case y? = 0, we :
use 0. The individual row of this Table will be denoted as the incidence vector
of the field, This vector completely determines the classification of the re-
Spective field into the system, Here, the sequence of the fields p as well as |
of the coordinates y; can be arbitrary.

| We will demonstrate the above statements on the example of a frame, in

accordance with Fig.2:

i=1 2 3 4 §
Yi=@o Wy @1 P2 @y

. j=! 123" f
J=2:1 - !
3 1 Field 1 e=1 0123 <
4 1 2 0304
2 1 3/1—2405
4 1 Field 2
1 X Incidence Table
4 % 1 Field 3

Incidence Matrix

3., Construction of the Stiffness Matrix

Our method consists in the construction of two matrices referring to the

discrete strains y,: a stiffness matrix € = (c,k) and a2 mass matrix Mt = (mik).

—1%°

Fig.1l Field Coordinates

These are the coefficient schemes of two forms, quadratic in the coordinates y,
and representing the potential and kinetic energy of the system. Thus, both
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matrices are symmetrical; M is positive-definite and & is definite or semidefi-3
nite, In this manner, the continuous vibration problem is coordinated with a
matrix eigenvalue problem, that of the matrix pair € and it whose eigenvalues A =

| o g(’* -2
; ‘ ?’1-.(;2 z ?—\ vy
‘ G xv

3

1
x
% &
R Z N N\

| Fig.2 Construction of the Incidence Matrix
| for the Example of a Frame

= ¢® are real and non-negative. In accordance with our goal of an elementwise %
treatment of the problem, we develop both matrices from corresponding subma-

trices (% andﬂnp for the individual isolated beam field., As demonstrated below;

4 = . 1
(1 |

Fig.3 Calculation of Field Stiffness

these field matrices can then be used for combining the system matrices § and ﬂﬂ
in a simple manner, by using the incidence matrix of the system.

The construction of the stiffness matrix @ is a purely static problem
which, incidentally, is exactly solvable, For the isolated field of the num-
ber p, the elements cfk of the field matrix §,, as constraining forces K, for
the generation of the unique strain yf =1 at yf = Q0 for 4 # k,.can be deter-

mined by the conventional methods of statics, For the strain cases k = 1 and 2,

the working theorem with the bending moment M(x) = -K,x + K, (Fig.3) and the



auxiliary moments M, = -x, M, = 1 will yield the following two equations: /204

[}
e _
f M(x) M (x) dx = ay K;—a, Ky =1 or 0 ,resp

E I(x) Z
' | (3)
f M(;)I]Z:)(x) dx =—a, K, +06,K,=0 orl vep “
Here, the coefficient a,, are abbreviations of the following integrals: |
! e 1 " 5 ‘,
a, = -—f:——dx=—'—+—f df v+l - :
J El(x) EI, ] & (1)

where (v = 0, 1, 2) with an arbitrarily selected reference stiffness EI, (see

Section 6), Using the coefficient matrix
2{ — 02 _al
—a ay/

and the matrix & of the constraints K, and K, for the two strain cases [the two.
p i

right-hand sides of eq.(3)] - which, however, are the elements c;, for i, k =1
and 2 - eq,(3) can be written in abbreviated form as ¥ =G, which yields

R=yr=L(% @
D 01 (.

with the determinant :

4 _—

i - - - !

D=aga,—a} = 5 a—6) =775 D (5)

The two other forces K,, K,, conversely, are obtained from the equilibrium con-
ditions as K5 = —K; and K, = K;4 - K;, This strictly defines the symmetric

matrix of the field stiffnesses as

a, a,; ! —a, (Go—ay) !
G, =Lk al a, I2 —g,1 @—a)r
PDY  —a, —a, ! a - —{e,—a)! (6)
(50 —ay)l (51 —ay) I "'(ao —"71) l (Eo —2 51 + Ez) B '

where { = &p must be read everywhere, The matrix is singular, of
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the rank 2 since the free field is doubly-unrestrained,
For the important special case of constant bending strength EI = EIp,
eq.(6) is transformed into

12 61 —12 61

6 =El 61 412 —61 2B with 1 =1
¢ Py 12 61 12 —61 ¢

61 212 —61 4102

1)

In the case of variable bending strength EI(x) = o(x)EL,, the coefficients a,,
in accordance with eq.(4), can be calculated by numerical integration (Simpson
rule),

The field stiffness @p is the matrix of the potential field energy (work

of deformation) Ay, in accordance with

4
2 Ao = _kZl Suylyi= 174,1('501)0'

(8)
These field energies are cumulatively added to the total energy A, in which case
it must only be taken into consideration that, in general, one system coordi-~
nate y, refers to several field coordinates yf (in the incidence Table, the

same number i appears in several sites)., Consequently, in addition to the
summation of the expressions (8), the field coordinates must be converted into
system coordinates, which can be done formally by means of the incidence ma-

trices A% in accordance with eq.(l). This will yield, for the total energy A,

24= 5 36,8y = "’(,f“i a;(s,,a,)g .

In this case, the inner sum can be formed by combining the field stiffnesses Cps

similar to a diagonal matrix, into an auxiliary matrix /205
¢ 0 .
. ¢ l
@0 = 2,
. | (9)
0 c,



And then multiplying this matrix from right to left by the total incidence |
matrix 3 or J'. This will furnish the wanted system stiffness matrix

C=9e3 (10)

and thus also the total work of deformation A, from ‘

24=1yGCy. : (11)

|

The operation (10) results in a partial overlapping of the field matrices c,
lined up in 6°, For a practical execution of this calculation, see Section 8,
In the case of spring-filled supports and rotary-spring supports with the
spring constants c; and C; respectively, the energy expressions of the form
c,w? or quf also must be added, which corresponds to a mere addition of the
spring constants ¢; or C; to the corresponding diagonal element of the total
stiffness G, In the case of coupling springs, acting between two coordinates y;

and y,, the additional energy will be

6 =) o COi—y),. resp.
This can be treated like an additional coupling field with the following two-
row field matrix, referring to the system indices i, k:

N — 1 —1\ | '
: c,( 1 1\ or c,.<_1_ 1), vesp. (12)

/
To this corresponds an additional two-row incidence matrix which has the func-
tion of distributing the elements #¢; or 10, over the correct places i, i; i, kj

k, i; and k, k.

L. Construction of the Mass Matrix

The process of constructing the mass matrix, which is easiest to derive

from the kinetic energy, is quite similar. The timewise maximum value of this
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matrix, in the case of a sinusoidal vibration, will be N
T=—;—a)"'f,u(x) w?(x) dx

with the (generally variable) mass distribution u(x) per unit length, to which I

might still be added terms of the form of

1 1
ot me wl -
5 @ m;w} and 3 w? @jq)? \l

\
for point masses and rotary masses which, however, are neglected for the momenti
Then, we replace the unknown deformation function w(x) fieldwise within each
field, by a cubic interpolation polynomial of the following form:

(a) = Hi(w) w8 + Fhs) 8 -+ Hile) w§ + H(o) .
or, in abbreviated form, ) = ;ﬂ 1) ‘ (135
@ =l d ‘
with the following Hermite interpolation polynomials*

Hx)= 1—38428,

Hyx) = (—28+ &)1, with §=2%

Hx)= 3828, o (14)
Hx) = (—&+&)1, | |

For the field energy, this again will yield a form, quadratic in the field co- -

ordinates,

§

4
2Ty=0* X mhytyi=aw*y, MY,

k=1

with the coefficients mfk which can be fieldwise calculated by means of the /206

Hermite polynomials Hy(x) and the mass distribution u(x), yielding

, - )
’"?h = j.ou(x) 11.(:\7) }Ih(x) (Ix . (15 )
9

* Basically, higher derivatives can also be used as coordinates; in this case,
up to the third derivative in accordance with the order 4 of the bending dif-
ferential equation. This was done by Falk (Bibl.5).
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These coefficients form the elements of the four-row field mass matrix ft, which;
épproximates the inertia property of the p-th field, The integrals (15), in

the case of variable mass distribution, can be interpreted by numerical inte-

gration. For the case of constant mass density u = Bo = const, these integralsi

'can be formally calculated, yielding the following arrangement for the field

matrixs
156 221, 5t  —131, ,
l 221 12 131, —3I é
M = l‘L‘.‘Z D) e @ e . (16 ) -
¢y s 131, 156 —221,

—131, —31 —221, 4B ;

By summation of the field energies to the total energy, under conversion
of the field coordinates y? to system coordinates y; by means of the incidence
matrices, the following system mass matrix will be obtained in the same manner
as in the case of stiffnesses:
| M= Ty | (17)
with the auxiliary matrix - 0

> 1

M, ‘
MO = ., (l8>
0 M,
in which the field matrices My are diagonally arranged. By the operation (17) ,

these field matrices are made to overlap partially. The total energy will then

be
2T=0eryMy.

(19)

Again, possibly present individual masses my and torsional inertias @, must
be added to the corresponding diagonal elements of ft, Here again, it is well
possible that coupling terms appear, namely, in the case of extension rods if
their deformation is assumed as linear (neglecting sinusoidal longitudinal vi-

brations). For example, the mass of coupling springs can be taken into consid-~
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eration in this manner, In the case of uniform mass distribution, a coupling

field with a two-row field matrix
1 21 i 2 1 ( :
—m; or —®, 5 i
6 " (1 2) . 3 ,<1 2) resp- (205)
is obtained, where the last term refers to coupling by a torsion rod. :

5. Eigenvalue Equations, Correlation with Integral
Fquation and Ritz Method

From the energy theorem A + T = const, assumed for the time-variant vari- |
ables y; = y; sin wt, the equations of motion are derived in the conventional
manner by differentiation., This leads, for the amplitudes, to the eigenvalue

equation of the matrix pair €, ft, namely,

Cy=2iMy with Ai=ot. (212)

In eq.(21), the expression n'Gy is exact for the potential energy, whereas the
expression for the kinetic energy #'fih contains the replacement of the bending -
strain w(x) by the approximation w(x) constructed fieldwise of cubic polynomi-
als; thus, also the eigenvalues \ and the eigenvectors h of eq.(2l) can be only‘f
approximations of the exact values, as had to be expected, |
In the case of nonsingular system stiffness §, there exists the inverse ‘
matrix §§ of the flexibility factors f,,. On multiplying the left-hand side of
eq.(21) by 6™} = F, this yields the eigenvalue equation of the matrix Ft |

- s [
p=AFMYy with i =c?, (22)

which is a transform that might be of advantage for numerical purposes, How-
ever, eq,(22) represents also a direct approximation of the integral equation

of the problem., This is due to the fact that, by means of the influence func-~
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tion f,,, i.e., the deformation at the point i by the load 1 at the point x,
the local strain y, produced by inertia stresses u®p(x)w(x) can be written in

the integral form » |
yi= o [ p(x) w(x) fi d= . | (23).

This exact relation directly reduces to eq.(22) and thus also to eq.(21) if, (2@2

first, w(x) is replaced by the polynomial approximation w(x) as had been done |

|
prev1ously and, second, the influence function is treated in the same manner, f
This is possible on the basis of the well-known symmetry property f,, = f,4,
where f,, again represents a bending strain at the point x due to unit load or
unit moment at a coordinate point i, This bending line f,,, consequently, can ;
be approximated sectionwise as w(x), by using the fys = £y, as supporting
values, The result of the calculation is then equal to eq.(22), which gives
the correlation of our method with the integral equation for the case that an
influence function does exist,

Our procedure also has to do with the calculus of variation. It is known |

that, in this calculus, the problem of bending vibration is formulated as an

extremal requirement for the regular Rayleigh quotient:

_ JE I(x) [0 (x)]? dx
Rl = iy e = Extr., | (24)

where w(x) is to traverse the region of all admissible functions, In the case i
of individual springs and individual masses, the corresponding finite energy
expressions enter in both numerator and denominator, The most important approx-
imation method in the calculus of variation, namely the Ritz method, replaces
the function w(x) to be varied, after selection of several fixed so-called co-
ordinate functions v,(x) which must be "admissible™ in the sense of the calculus
of variation, by a linear argument.

13 (x) yl v; ( x)
l

(25)
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with still free parameters y, that must be so defined that the extremal re-
quirement (24) will be satisfied at least within the region of the functions
‘covered by the argument (25).

The sectionwise cubic approximation w(x), used by us here, accurately has é
the form of eq.(25), the parameters ¥y are our system coordinates, and the 1
:strains wy and ¢, are at the field boundaries, However, the coordinate func- |
tions v,(x), including the derivation, constitute steady linear combinations of§
the Hermite polynomials Hy(x). In our method, we used this approximation only i
for calculating the kinetic energy, i.e., for the denominator of eq.(24),
whereas the potential energy was determined exactly, without using the bending ;
slope w(x), solely from the discrete strains y,. The Ritz method is obtained
if the argument (25) is also used for the numerator of eq.(24), i.e., the |
(linear) second derivatives HJ'(x) of the Hermite polynomials (14). 4 fieldwisei
resolution will then yield, for the potential energy Ap, a quadratic form ac- |
cording to eq.(8), with the field stiffnesses Efk which, in difference to be-

fore, must now be calculated according to

l .
W= [ E 1) Hix) Hi(s) dv (26)

For the special case of a sectionwise constant bending strength EI = EIp =

= const, this second method leads to exactly the same values as before, namely,
to the field stiffness €, in accordance with eq.(7). Consequently, in this
case our procedure represents at the same time a Ritz method, At nonconstant
bending strength, the two procedures must differ because of the fact that, in
the earlier derivation of the matrix €, a sectionwise linear moment slope is
used as basis which coincides with the sectionwise linear slope of w'" only if

EIp = const,
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6. Computation with Referred Quantities

For a numerical calculation, it is suggested to work with dimensionless

referred quantities, using suitably selected length, stiffness, and mass dis-

tribution |
|

:as reference quantities, Referred quantities will then be the following:
Length _y » (28.1)
Stiffness &=L L|E I, _ (28.2)i
Masses B = lholtte s i = mifuigly, Op = Oifue 1y, (28.3 ):
Spring constants G=cB/EI, C=CGIEI,. : (28.4)

If, in addition, the angles ¢ and the moments M are replaced by the dimension-

less quantities wy; or K,:
P=he.  M=Mp, (29).

(in that case, ¢ = 1/45, i.e., ® = 1 must be used as unit torsion), the /208

following dimensionless frequency parameter will replace A = o®:

Mo ly o

X\‘—' ET, * (BO)z

In all our formulas, the quantities {, p, m, ¢, ¢, A, etc, must be replaced by

the vinculated quantities and the stiffness EI . must be replaced by U

P

7. Shearing Strain and Torsion Inertia

Even these two influences can be calculated in first approximation, in a
rather simple manner., Both effects are of the same order of magnitude; for
this reason, if at all, they should be considered together. The shearing strain
due to the transverse force Q produces a difference between the cross-sectional -

inclination ¢ and the inclination ¢ = w' of the beam axis

17



(31).

with the shear cross section F, (for example, the web cross section in an I-

beam) and the shear modulus G. The work of deformation will then be increased

by a shear component A, in accordance with

2 4, —J -“‘h

Here, the previously used coordinates w;, v, are replaced by wy and ;.

This

!

again, in calculating the stiffness matrix, will increase the coefficient ay by:

[ N
by = f G F(x)
0

' '
6, = ay + by

to
while the denominator determinant will increase to
D’%aoa;—a?{=D+a0b2'

At constant cross section, we have

with a shear parameter

becomes

12 61 :43 fae T
. 2B (1 —60)

gt E1 61 4131+ 3

CTTEFOTHG | 12 1 iz"
61 2B(1—60) —61 41(1+30)

(32).
(33)

(3a):

(35)

(36)

where all quantities refer to the p-th field., Then, the field stiffness matrix:

(37)

again with 4 = Lp, EI - El,, ¢ = op, which means that the stiffness is reduced.

Compared to this, the mass matrix increases, because of the torsional com-:

ponent of the kinetic energy T, in accordance with

.
2T=24 of 4(x) wiz) dx + A (_.f ‘O(x) yi(x) dx

18
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with the inertia moment 8 (x) per unit length
) = @) #x) . (39)

At simultaneous consideration of the shearing strain, the flexure w(x) as well i

as the cross-sectional inclination ¢(x), can be reproduced by a Hermite inter- |

'

polation only in first approximation, However, numerical calculations indicatei

|
that the resultant accuracy is sufficient. First, the interpolation poly- ’

nomial (13) is replaced by
D(x) = Hy(s) 10f -+ Ho@) v + Hy(a) uf + Hw)yg. (13a)
Secondly, the following is substituted in eq,(36), in first approximation:

v(x) (%) = H(m) g + Hi(®) p + Hi(x) wl + Hl(x) p2 (40)

with the now only quadratic polynomials H;(x). Accordingly, the elements mfk
according to eq.(15) must be supplemented by the elements
h . I
£ = ‘fﬂ(x) Hj(x) Hi(x) du (11 )

Thus, at constant field cross section the following auxi tary matrix for tor-

sional inertia will be obtained: . [209
36 3 10 —36 3 ll‘ ;
31 =B
{ 31 413 3, ? |
T="0n| s 36 =3, (12)
31, —1UB —34 4 13, ‘ ‘

¢

with a torsional inertia parameter of

Ty = Pylpeg 2 = (if1)3 - (13)
Addition to the field matrix (16) then yields the modified matrix

156 + 5047 (22 +427)1 51 —5047 —(13—427)1
g il @+adl @esenr (3—a2znl — @+ UR) (L)
¢ TA0| 543047  (13—427)1 15645047 —(22+427)!

—(13 —427) 1 —(B+147)2 —(22 +427)1 (4 4+ 567) 1
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where, again, all field quantities refer to the p-th section: 4 = Loy b = Hos
T = Tpe
In the differential equation for bending vibration with shearing strain

and rotational inertia, at constant cross section, the two parameters ¢ and T
appear as the sum ¢ + T and the product or. If the product is neglected, this
will mean -~ in our method - that the rotational inertia must be considered in
first approximation by a correspondingly increased shear parameter o = g + T,
Consequently, only the stiffness matrices will change here in accordance with
eq.(37), while the mass matrices can be used in the old form (16) without tor—
sional inertias, The result of this process is shown in the last row of the
brief survey given below, where the various cases are compiled for the example ;

of a beam clamped at one end and free at the other end, at a subdivision into

.only two sectors of 4/2 each:

Values for T2
Nethod Exact Error in %
o= 0. T=20 : 351771 3.51602 0.039,
o= 0.10, T=0 2.90806 2.89433 0.48%
o= (.10, 7 = 0.02 2.8088% 2.83383 —1.00%,
o* = 0.12 2.83303 N 0.049],

8. Automatic Construction of the System Matrices

By means of the incidence vector, added to each field and consisting of

four signed indices

i), lg bz Bys
through which the field is inserted in the system at the correct point and in
the correct sense, the system matrices § and Tt can be automatically computed
from the elements cfk and mfk of the field matrices gp,smp. After writing in
the four indices i; and the elements c?k and m?k for the p-th field - for which,

at constant field cross section, four values c?k and six values m?k are required
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and, at variable cross section, six values c?k and ten values mfk - these ele-~ |

ments are transferred by means of the indices i, to the correct place (lia‘:

|ik|) of the system matrices and there added to any values already present. In%

the symbolic of computer calculation, the program then reads

(45)

t g 1 = Crr ) by . e L. : 0
i jintigdF = Cli iy T 280 () - sgn (5 - s }

. R p— . Cy— [ 5r L L
M= G osgn (5) - ospn () - m

[ W

i
i
!
|
i
!
!
1
{

For the case of iy = Qor i, = 0, no calculation need be made,

9., Numerical Treatment

Of the many methods available for the treatment of the matrix eigenvalue
problem (21), we are selecting the iterative calculation of eigenvalue and
eigenvector as specifically advantageous for vibration problems, Of the total—;
ity of n eigenvalues )\; of the matrix problem (21), only a certain number are
in question as useful approximation values for the natural frequencies, start-
ing with the lowest value A, of the fundamental frequency and increasing to
higher values Az, Aa,.s.. o At appropriate control, the iteration will yield
only the numerically lowest value A, in addition to the eigenvector h;. The
next higher values Ay, hy can then be determined by iteration with an additional
operation, As additional or auxiliary operation, we will select a method de-
veloped by Hotelling and denoted as "deflation" process, which we will modify
to the problem (21) of the matrix pairfTt, €, At proper performance of the /210
calculation, the errors produced by the loss of significant digits can be kept
to a minimum,

The desired convergence to the lowest value A, (the highest reciprocal u; =
= 1/),) is obtained by the iteration instruction

C3rir=M3, = w,, v=01,2..., (46)
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based on an arbitrary vector 3,, supplemented by a norming instruction |

B (16a)

i.,e., division by a certain component, for example, the r-th component which 1s

highest in value, The iteration (46) requires the solution of a linear system |

i
of equations with fixed coefficient matrix® at variable right-hand sides M3, =

= (known as fractional iteration). In this case, a nonsingular stiffness i

matrix is assumed, det € = 0, The case of the singular matrix € must be treated

é
separately., The method converges in the sense of {
3-’_.’1)1’ |

|
Wa— a3y (z=1i) } (Lﬂ;)

For deflation, i.e., for eliminating the influence of };, the "left \
i

eigenvector" b, is used, which is the vector of the matrix GI"' transposed

to MG CMip=17iv. L
(18)
In our case -~ symmetry of € and ® - the left vectors ¥ can be readily deter-
mined from the right vectors h through
v=My, (49)
which, on substitution in eq.(48), again yields eq.(2l). At different eigen- [
values Ay # )., the following orthogonality exists between right and left
vectors: .
932(1) = 9)2 —7'_1 D], b; >
(50)
If, with b, the modified mahjaxv for ik, ;
o; Y = K for i=k. f (51)

is formed, then this matrix, together with the unchanged stiffness €, will have
the same eigenvalues u; = 1/%; with the exception of u; which has been trans-

formed into zero; the eigenvectors f; remain unchanged:
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MOy, =My, —p, =0, )

which follows from the orthogonality relations (50). Now, the matrix M‘1’ needé
not be explicitly formed, which is of importance with respect to the possible i
|
loss of significant digits, Instead, the iteration is made on the basis of the |
old matrix Tt with an auxiliary term in the form of
{
@3:+1=9R6,—C1vb1=m9) (53)
with o ?
C“:-_.——I-iblé,. (51‘-)
The calculation is convergent to ‘ 1
R T (55)

Again, norming is done according to eq.(4ba). The coefficients c;y, together
with 3y - hp, tend toward zero so that the subtrahend in eq.(53) represents a
small correction factor which prevents a migration toward the first eigen-
vector t,* (also known as the J.J.Koch method).
The method can be continued; the next step operates on the matrix
PILY =2Dt—-,t—ln, n;—-:;n, 4 | (56)

with k; =0}y, but again without explicit formation of this matrix in the form

of - |
- @5:+1=§m3r—°‘1vb1—¢z—bz=mg) (57)
with 2
1 ’ 1 ’
€y = 1: U dus Cr = 7‘.; b, de L (58 )

Again, the two subtrahends represent small corrections that prevent a migration

toward the earlier eigenvectors i, ha.

10. Procedure for a Singular Stiffness Matrix

The case of the singular stiffness matrix €, which corresponds to the

¥ A computational scheme has been given by Zurmihl (Bibl.6, 7).
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absence of constraints of the vibration system, needs special treatment*, If p(
of the n degrees of freedom are unconstrained, the p-tuple eigenvalue iy = O \
will occur, The matrix € is singular, having the rank slope p so that,

with respect to the eigenvector 0, exactly p linearly independent eigenvectors j

hio exist as solutions of the homogeneous system
Chio=0 t=12,...,p). (59:)

These yield the free motions of the system, assumed to be rigid, i,e., the
motions comnected with no strain energy., It is now a question to eliminate
these uninteresting free solutions h,,. This is possible by a deflation of the
mass matrix f to a matrix M) of the same rank slope p as €, again by means of“

the left vectors
Uio=m0;o (i:l,z,...,p). (6O>

coordinated to the hyq.

Let us imagine the two vector systems which we will combine into one ma-

trix each: , Do = M1pr - - -+ Ypo) and By = (Dyor - - -2 Dpo) ;
biorthonormed in accordance with the instruction | |
bio eo = o Mo = dia (62)
in matrix form V‘B{, Ve _ ?):-‘l%*; @0 MY, = 6. (62a)
Then, the new mass matrix will read
MO =M — B, By . (63)

This matrix has the same rank slope as € since, because of eq.(62), the follow-

ing is valid:
MO Yo =MY,o —vi0=0. (64.1)

However, for the remaining eigenvectors Y, belonging to the actually interesting

eigenvalues Ay # O, the following is valid because of the automatically satis-

¥ More details are given elsewhere (Bibl,8),
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fied orthogonality bjg,h, = O:

MO y; = My, — 0 =1, (64.2)
which means that the problem (21) can be replaced by }
. |
Gy =iy . (21a)

i

Reduced matrices § and ft of the number of rows n - p are readily obtained |
by canceling the p same (but otherwise arbitrary) rows and colums in € and !R(”;
which merely must be so selected that the reduced matrices are nonsingular,

Let us assume that these are the p last, For this, let us imagine the matrix
(;D_ = (L‘Z’ . ‘ "y cn—pi ?)0) )

whose n - p first columns are those of the unit matrix while the p last columnsé
are formed by the free solutions h;,. Thus, we transform to new coordinates 3 |

in accordance with
hy=3-

Then, eq.(2la) changes to

CYs=20M 93
with the matricesG® andM (9 whose n - pv first columns coincide with those
of € and M1 , whereas the p last columns have become zero., If, for restoring
the symmetry, we multiply from the left by g)' and again use h instead of 3 , we

will obtain Gy =iy (65)

with the matrices A ' A

C=PCY and M=YPY MO Y,

which is simply obtained from € and 72 on replacing the p last rows and /212
colums by zeros, Thus, the p last components of the vector 3 become meaning-

less and, by equating them to zero, we will have § =3. This all comes down to

the fact that all rows and columns that had become zero can be eliminated en-
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tirely; eq.(65) must be read in this sense, The problem has thus been reducéd i
to a problem of the order n - p because of the fact that the free motions, of |
no significance for the vibration process, have been eliminated, The same

method, supplemented by a corresponding deflation of the stiffness matrix, can

be used instead of the method mentioned in Section 9 for calculating the higher

eigenvalues, in which case the order of the matrix is reduced each time by 1. ;
vExcept, in this case, the vectors 3 must again be converted to . The process é
will not be further described here, because of the expected loss of significantf
digits. |
The actual computational work required for a reduction of the matrices
consists, in addition to performance of the deflation (63), in a biorthonorming§
of the vector systems 9, B,, of which - incidentally - only the system B, is é
required, This is so because the solutions of the homogeneous system of equa- %

tions (59) occur in a non-orthonormed form

Xy = (Z10» L200 + + » Lpo) > I X =g = (Uzqr Uggr + - +» Upo)
An argument

Xo=D N, U= Yy R (66)
with a still to be determined transformation matrix R, taking the requirement ‘
(62a) into consideration, will lead to

N=3% =09 [R=RNN. (67)
This can be realized by a so-called Cholesky resolution of the p-row symmetric |
matrix 9t = XU, = E4MX, into the upper triangular matrix R and its transpose R'.
Since the number p of free coordinates generally is small with respect to n,

this pretreatment of the problem can still be done by manual computation®,

* For a practical execution, see for example Zurmihl (Bibl.9). The procedure
given in Section 9.3 of that paper must be modified in the sense of a symmetric
Cholesky resolution so as to preserve the correlation Uy = T, and B, = T9y,.
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11. Typical Example

For the example of a story frame in Fig./ with equal field values £, p, EI;
these values are selected as reference quantities so that all referred gquanti- %
ties will become 1., The longitudinal extension of the rods is neglected, so i
that EF = «, Restriction to antimetric vibration states, under utilization of f
the symmetry, requires four coordinates «,, W;, ¢p, Wp which are given as y,,
Y2s Yas Y4 in this sequence, After selecting the field coordinates in accord-
ance with Fig,/, the incidence matrix and the incidence Table of the system

will look as follows:

= 1 2 3 4
P Wy @, w0, -
. ; \ R N }
=3 ! 1 | . FREr Bt i
T | Pield 1 o 4 |
- : P i 2 ;
211 Field 2 /
‘ Field e=1" 0 0
2t Field 3 2. 01
2.1 ; 3. —2 1 |
s — ol 21
211 | Field 4 5/ 0 3
3 1 6 —4 3 |
4 1 ! : : L
2 1 ‘ Field_ 5 - FREINRY 3Rt CC e '
4 1 1 Fig.l Story Frame
.1 A
2 - 1 . Field 6
3 H _1 %
4 !

—

[213
The mass 1 of each of the two cross girders must be distributed for the bending
vibration of the vertical rods as point mass, in the following manner:

1 105

120 over the field ends 1 and 6 and over the field starts 3 and J;

L
L over the field end ) and over the field start 6,
2
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In this manner, the following two matrices are obtained: i

14 0 2 —06
—;—@= 0 24 6 —I12 ,

In Table 1, the iteration is made for the second eigenvalue )\, after the itera-é
tion for A; had been made, Below the matrix ft, we have the triangle resolutionj
(elimination) of the matrix @ and, following this, the elimination of the |
superposed right-hand sides fh,.

The two first eigenvalues

as Ritz approximations, constitute upper bounds of the exact eigenvalues. From

the eigenvectors
0,40798 |
0,52592 )
0,18726 |
1,0 ¢ /

)

and 030796\
—1,12136
1,19754 |
w0/

) =

the pertaining vibration modes of the frame can be read directly.
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